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Basic definitions

Fuglede’s conjecture for locally compact groups: A measurable
subset of a locally compact group G is a tile if and only if it is
spectral.

Definition
T ⊂ G is a tile if almost disjoint translates of the T cover
almost the group G.

Definition
T is spectral if the set of complex valued L2 functions on T is
spanned by the restriction of exponential functions, which are
pairwise orthogonal.
Early investigation concentrated on the case of the Euclidean
spaces, which have a strong relation with the case of finite
abelian groups.
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Initial positive results

▶ Fuglede proved the conjecture if the tiling complement or
the spectrum is a lattice (Euclidean space). This actually
shows that the two directions of the conjecture are typically
treated separately.

▶ Conjecture holds for the union of two intervals (Łaba)
▶ Conjecture holds for convex bodies in R2 (Iosevich, Katz,

Tao).
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Finite abelian groups

There is no need to deal with sets of measure zero that are not
covered or covered more than once. Every function is an L2

function.
The exponential functions are characters or in other words
irreducible representations. These functions are parametrized by
the elements of G and they do form a group where the
multiplication is the pointwise multiplication. Moreover, this
group Ĝ is isomorphic to G so the spectrum can also considered
as a subset of G. We will index the representations by the
elements of G.
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Spectral pair

(T,Λ) is a spectral pair, where T ⊂ G,Λ ⊂ Ĝ, if

χλ1−λ2(T ) =
∑
t∈T

χλ1−λ2(t) = 1̂T (λ1 − λ2) = 0.

If (T,Λ) is a spectral pair, then |T | = |Λ|.
If (T,Λ) is a spectral pair, then (Λ, T ).
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Connection between finite and infinite

T → S(R) ⇐⇒ T → S(Z) ⇐⇒ T → S(ZN)

S → T (R) =⇒ S → T (Z) =⇒ S → T (ZN)

The conjecture was first disproved by Tao. Using Tao’s method,
it is not hard to find a spectral subset of Z5

3 of size 6, which is
spectral and is clearly not a tile.
The 3 dimensional case of both directions of the conjecture is
disproved [4, 2]. (Kolountzakis-Matolcsi and Farkas, Matolcsi,
Móra)
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Some results for cyclic groups

Spectral-tile direction:
▶ Zpmqn , where m ≤ 6 and n ≤ 9 or pm−2 < q4, Malikiosis,

[9],
▶ Zpqr, Shi, [10],
▶ Zpqrs, Kiss, Malikiosis, S., Vizer [3],
▶ Zp2qr, S. [12].

Tile-spectral direction:
▶ Zpkql , Łaba, [5],
▶ Znp, where n is square-free, Malikiosis, [9],
▶ Z(pqr)2 , Łaba, Londner. [6, 7]
▶ pn1

1 pn2
2 pn3

3 with p1 > pn2
2 pn3

3 and pn1
1 p22p

2
3p

2
4 with p1 > p2p3p4

Łaba, Londner [8].



Convex sets, Fuglede’s conjecture

▶ Iosevich Katz Tao: Convex bodies in R2.
▶ Greenfeld, Lev: Convex polytopes in R3.
▶ Lev, Matolcsi: Convex bodies

▶ ’It has long been known (Venkov, McMullen) that a convex
body that tiles by translations must be a polytope, and that
it admits a face-to-face tiling by a lattice translation set Λ
and therefore has a spectrum given by the dual lattice Λ∗’.

▶ Matolcsi and Lev introduced the notion weak tile.

▶ A tiles G with B if and only if 1A ∗ 1B = 1G.
▶ A tiles G weakly if there is a function w : G → R≥0 with

w(0) = 1 and 1A ∗ w = 1G.
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Question on weak tiles

▶ If A tiles G, then A weakly tiles G.
▶ If A is spectral in G, then A weakly tiles G. This is the

novelty of Lev and Matolcsi. In the case of a spectral pair
(A,B) in a finite group G, a weak tile complement is equal
to w = 1

|B|2 1̂B ∗ 1̂−B.

▶ Since Tao proved the existence of a spectral set which is not
a tile we know that there is a weak tile which is not a tile
so this is indeed a new definition.

▶ Is it really a new one?
▶ Kolountzakis, Lev and Matolcsi asked whether there is a

weak tile which is neither spectral nor a tile.
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Lonely weak tile

Theorem (Kiss, Londner, Matolcsi, S.)
There is a set in a suitable chosen finite abelian group which is a
weak tile but which is neither a tile nor spectral.

▶ Tao’s construction: There is a Hadamard matrix of size 12.
Take a basis in Z12

2 . This is a spectral set which is not a tile
since 12 ∤ 212.
Similar construction can be carried out in Z6

3 and we may
reduce the dimension by 1.

▶ For every odd p there is a similar example B in H := Z4
p.

▶ Kolountzakis-Matolcsi construction: Take a ’basis’ in Z5
6

and add 0. This is a set that tiles Z5
6 and does not have a

universal spectrum.
This allows us to contruct a set A in Z5

6 × Zq which is a tile
but not spectral (q is large enough, not necessarily a prime).

▶ Can we combine the two constructions?
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How to combine these constructions?

▶ First try: A×B
▶ This is not a tile (as we will se later).
▶ Can we prove that this is not spectral?

We could not prove it and it is seems to be a spectral set.
▶ A better idea is the following:

Pt := ∪a∈AB + t(a).

▶ This is still not a tile.
▶ Is it spectral? It does depend on the choice of t.
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Lonely weak tile

What is the set of Fourier roots of Pt?

1̂Pt(γ, ρ) = 1̂B(ρ)
∑
a∈A

γ(a)ρ(ta). (1)

Let us specify t, which is a map from A to H = Z4
p:

t(0Z5
6
, k) = vk for 1 ≤ k ≤ 4, and t(a, j) = 0H otherwise. (2)

1̂Pt(γ, ρ) = 1̂B(ρ)

(
1̂A(γ)−

4∑
i=1

γ(ai)(1− ρ(vi))

)
. (3)

Proposition
Let Pt be as above and assume q is a prime. Assume that
1̂B(ρ) ̸= 0, and ρ ̸= 0, and the Zq-component of
γ = (γ1, γ2) ∈ Z5

6 × Zq satisfies γ2 ̸= 0. Then 1̂Pt(γ, ρ) ̸= 0.
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Theorem, consequence

Theorem
If q is large enough compaired to p, then Pt is not spectral.

A fake message of this construction. The following strategy
might not work: Every spectral set tiles weakly. In order to
prove the spectral-tile direction (for certain finite groups) of
Fuglede’s conjecture try to prove that every weak tile is a tile.
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Cyclotomic divisibility

▶ We would like to know when the sum of M ’th roots of
unities is equal to zero. This has been described.

▶ Let p1, p2, . . . pk be the different prime divisors of M .
Clearly, the sum of all pi’th roots of unities is 0.

▶ We identify the set of roots of unities with ZM . Then
’subgroup sums’ are zero and then ’coset sums’ are also 0.
Linear combination of characteristic functions of cosets will
also vanish at the corresponding representation.

▶ Classical result (de-Bruijn-Schoenberg, Lam-Leung) says
that there is no other way of getting 0 and if M has at most
two different prime divisors (k = 2), then multisets are
non-negative linear combinations of these building blocks.
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A generalisation

We use polynomial notation so instead of saying that certain
representation is a root of the Fourier transform we write
Φk | A(x) =

∑
a∈A xa, so this cyclotomic polynomial divides the

mask polynomial of the set A.

Proposition (Kiss, Łaba, Marshall, S.; Long fiber
decomposition)
Let M =

∏k
i=1 p

ni
i , and let N |M satisfy N =

∏k
i=1 p

ni−αi+1
i with

1 ≤ αi ≤ ni. Let A ∈ M(ZM ), and assume that ΦL(X) | A(X)
for each N | L | M . Then, there exist polynomials Pi(X) ∈ Z[X]
such that

A(X) = P1(X)F1,α1(X) + · · ·+ Pk(X)Fk,αK
(X) mod XM − 1.

Moreover, if A ∈ M+(ZM ) and K = 2, then we may assume
that the polynomials P1(X) and P2(X) each have non-negative
coefficients.



Playing (T2) against (T1)

▶ The so-called Coven-Meyerowitz conjecture says that tiles
of finite cyclic groups satisfy two properties (T1) and (T2).

▶ Sets satisfying (T1) and (T2) tile and spectral (Łaba).
▶ Every tile satisfy (T1).
▶ (T1) is about size constraint of a set and (T2) is a

condition on the structure of cyclotomic divisors of the
mask polynomial of tiles.

▶ Strategy is to assume A
⊕

B = ZM and assume A does not
satisfy (T2). Try to prove that B is too large and does not
satisfy (T1).

▶ We further assumed that B has all (T2) divisors and by the
previous assumptions it has an extra divisor. Does it cause
an extra size increase?

▶ We tried to apply this idea but the intermediate statements
fail because our long-fiber shifting constructions.
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A conjecture of Greenfeld and Lev
▶ It is easy to see that A×B is a tile if and only A and B are

tiles.
▶ Does the same hold for spectral sets as well? This question

was raised a few times by Nir Lev.
▶ Greenfeld, Lev: if A is an interval B is a subset of Rn−1 and

A×B is spectral, then A and B are spectral.
▶ Kolountzakis extended this result to the case, when A is the

union of two intervals.
▶ Greenfeld, Lev proved the analogous result when A is a

convex polygon and conjectured that this holds in general.
▶ Kolountzakis, Lev and Matolcsi extended them to the case

when A is a convex body.

Theorem (S.)
Let G be a finite abelian group of order n and let
D = {(g, g) | g ∈ G} denote the diagonal subgroup of G×G.

1. Let P = {(ai, bi) | i = 1, . . . , n} be a subset of G×G. Then
(P,D) is a spectral pair if and only if {ai + bi | i = 1, . . . , n} = G.

2. Let A and B subsets of G with |A| ∗ |B| = |G|. Then A tiles with
B if and only if (A×B,D) is spectral in G×G.
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Questions, suggestions

▶ Kolountzakis (Kiss personal communication): Can we
construct A+B = G with neither A nor B being spectral.

▶ Combine the ideas of the previous two papers.

▶ Can we use this new idea to construct S − T (R2)
counterexample?

▶ Is there another meaningful subset E of G×G such that if
(S,E) is a spectral pair, then S has some nice property.
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Gabor basis

Theorem (Iosevich, Kolountzakis, Lyubarskii, Mayeli,
Pakianathan)
Suppose that E ⊂ Zd

p, where p is a prime. Then{
1

|E|−1/2 1E(x− a)χb(x)
}
a∈A,b∈B

is an orthonormal basis for

L2(Zd
p) if and only if (E,B) is a spectral pair and (E,A) is a

tiling pair.

The same can be formulated (and holds) for any finite abelian
groups.
Assume {f(x− g)χg(x)}g∈G is an orthogonal basis in L2(G).
▶ What can we say about f?
▶ Is there such an f for every finite abelian group G?
▶ What if we impose the condition that f is a characteristic

function?
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